MOSFET管失效的常見的六個原因分析
日期:2022-12-09 14:40:55 瀏覽量:1448 標簽: 失效分析
MOS管是金屬(metal)—氧化物(oxide)—半導(dǎo)體(semiconductor)場效應(yīng)晶體管,或者稱是金屬—絕緣體(insulator)—半導(dǎo)體。MOS管的source和drain是可以對調(diào)的,他們都是在P型backgate中形成的N型區(qū)。要正確測試判斷MOSFET是否失效,重要關(guān)鍵是要找到失效背后的原因,并避免再犯同樣的錯誤,本文收集整理了一些資料,期望能對各位讀者有比較大的參閱價值。
用萬用表簡單檢測MOS管是否完好
測試MOS好壞用指針式萬用表方便點,測試時選擇歐姆R×10K檔,這時電壓可達10.5V,紅筆是負電位,黑筆是正電位。
測試步驟:
MOS管的檢測主要是判斷MOS管漏電、短路、斷路、放大。其步驟如下:
1)把紅筆接到MOS的源極S上,黑筆接到MOS管的漏極上,好的表針指示應(yīng)該是無窮大。如果有阻值沒被測MOS管有漏電現(xiàn)象。
2)用一只100KΩ-200KΩ的電阻連在柵極和源極上,然后把紅筆接到MOS的源極S上,黑筆接到MOS管的漏極上,這時表針指示的值一般是0,這時是下電荷通過這個電阻對MOS管的柵極充電,產(chǎn)生柵極電場,由于電場產(chǎn)生導(dǎo)致導(dǎo)電溝道致使漏極和源極導(dǎo)通,故萬用表指針偏轉(zhuǎn),偏轉(zhuǎn)的角度大,放電性越好。
3)把連接?xùn)艠O和源極的電阻移開,萬用表紅黑筆不變,如果移開電阻后表針慢慢逐步退回到高阻或無窮大,則MOS管漏電,不變則完好。
4)然后一根導(dǎo)線把MOS管的柵極和源極連接起來,如果指針立即返回?zé)o窮大,則MOS完好。
MOSFET失效的六大原因分析
一、雪崩失效(電壓失效)
也就是我們常說的漏源間的BVdss電壓超過MOSFET的額定電壓,并且超過達到了一定的能力從而導(dǎo)致MOSFET失效。
簡單來說MOSFET在電源板上由于母線電壓、變壓器反射電壓、漏感尖峰電壓等等系統(tǒng)電壓疊加在MOSFET漏源之間,導(dǎo)致的一種失效模式。簡而言之就是由于就是MOSFET漏源極的電壓超過其規(guī)定電壓值并達到一定的能量限度而導(dǎo)致的一種常見的失效模式。
雪崩失效的預(yù)防措施:
雪崩失效歸根結(jié)底是電壓失效,因此預(yù)防我們著重從電壓來考慮。具體可以參考以下的方式來處理:
1、合理降額使用,目前行業(yè)內(nèi)的降額一般選取80%-95%的降額,具體情況根據(jù)企業(yè)的保修條款及電路關(guān)注點進行選取;
2、合理的變壓器反射電壓;
3、合理的RCD及TVS吸收電路設(shè)計;
4、大電流布線盡量采用粗、短的布局結(jié)構(gòu),盡量減少布線寄生電感;
5、選擇合理的柵極電阻Rg;
6、在大功率電源中,可以根據(jù)需要適當(dāng)?shù)募尤隦C減震或齊納二極管進行吸收。
二、SOA失效(電流失效)
SOA失效是指電源在運行時異常的大電流和電壓同時疊加在MOSFET上面,造成瞬時局部發(fā)熱而導(dǎo)致的破壞模式?;蛘呤切酒c散熱器及封裝不能及時達到熱平衡導(dǎo)致熱積累,持續(xù)的發(fā)熱使溫度超過氧化層限制而導(dǎo)致的熱擊穿模式。
1、受限于最大額定電流及脈沖電流;
2、受限于最大節(jié)溫下的RDSON;
3、受限于器件最大的耗散功率;
4、受限于最大單個脈沖電流;
5、擊穿電壓BVDSS限制區(qū)。
我們電源上的MOSFET,只要保證能器件處于上面限制區(qū)的范圍內(nèi),就能有效的規(guī)避由于MOSFET而導(dǎo)致的電源失效問題的產(chǎn)生。
SOA失效的預(yù)防措施:
1、確保在最差條件下,MOSFET的所有功率限制條件均在SOA限制線以內(nèi);
2、將OCP功能一定要做精確細致。
在進行OCP點設(shè)計時,一般可能會取1.1-1.5倍電流余量的工程師居多,然后就根據(jù)IC的保護電壓比如0.7V開始調(diào)試RSENSE電阻。有些有經(jīng)驗的人會將檢測延遲時間、CISS對OCP實際的影響考慮在內(nèi)。但是此時有個更值得關(guān)注的參數(shù),那就是MOSFET的Td(off)。
三、體二極管失效
在橋式、LLC等有用到體二極管進行續(xù)流的拓撲結(jié)構(gòu)中,由于體二極管遭受破壞而導(dǎo)致的失效。
在不同的拓撲、電路中,MOSFET有不同的角色,比如在LLC中,體內(nèi)二極管的速度也是MOSFET可靠性的重要因素。漏源間的體二極管失效和漏源電壓失效很難區(qū)分,因為二極管本身屬于寄生參數(shù)。雖然失效后難以區(qū)分軀體緣由,但是預(yù)防電壓及二極管失效的解決辦法存在較大差異,主要結(jié)合自己電路來分析。
體二極管失效預(yù)防措施:
其實MOS管的D和S本質(zhì)上是對稱的結(jié)構(gòu),只是溝道的兩個接點。但是由于溝道的開啟和關(guān)閉涉及到柵極和襯底之間的電場,那么就需要給襯底一個確定的電位。又因為MOS管只有3個管腳,所以需要把襯底接到另外兩個管腳之一。那么接了襯底的管腳就是S了,沒接襯底的管腳就是D,我們應(yīng)用時,S的電位往往是穩(wěn)定的。在集成電路中,比如CMOS中或者還有模擬開關(guān)中,由于芯片本身有電源管腳,所以那些MOS管的襯底并不和管腳接在一起,而是直接接到電源的VCC或者VEE,這時候D和S就沒有任何區(qū)別了。
四、諧振失效
在并聯(lián)功率MOSFET時未插入柵極電阻而直接連接時發(fā)生的柵極寄生振蕩。高速反復(fù)接通、斷開漏極-源極電壓時,在由柵極-漏極電容Cgd(Crss)和柵極引腳電感Lg形成的諧振電路上發(fā)生此寄生振蕩。當(dāng)諧振條件(ωL=1/ωC)成立時,在柵極-源極間外加遠遠大于驅(qū)動電壓Vgs(in)的振動電壓,由于超出柵極-源極間額定電壓導(dǎo)致柵極破壞,或者接通、斷開漏極-源極間電壓時的振動電壓通過柵極-漏極電容Cgd和Vgs波形重疊導(dǎo)致正向反饋,因此可能會由于誤動作引起振蕩破壞。
諧振失效預(yù)防措施:
電阻可以抑制振蕩,是因為阻尼的作用。但柵極串接一個小電阻,并非解決振蕩阻尼問題。主要還是驅(qū)動電路阻抗匹配的原因,和調(diào)節(jié)功率管開關(guān)時間的原因。
五、靜電失效
靜電的基本物理特征為:有吸引或排斥的力量;有電場存在,與大地有電位差;會產(chǎn)生放電電流。這三種情形會對電子元件造成以下影響:
1、元件吸附灰塵,改變線路間的阻抗,影響元件的功能和壽命;
2、因電場或電流破壞元件絕緣層和導(dǎo)體,使元件不能工作(完全破壞);
3、因瞬間的電場軟擊穿或電流產(chǎn)生過熱,使元件受傷,雖然仍能工作,但是壽命受損。
靜電失效的預(yù)防措施:
MOS電路輸入端的保護二極管,其導(dǎo)通時電流容限一般為1mA 在可能出現(xiàn)過大瞬態(tài)輸入電流(超過10mA)時,應(yīng)串接輸入保護電阻。由于初期設(shè)計時沒有加入保護電阻,所以這也是MOS管可能擊穿的原因,而通過更換一個內(nèi)部有保護電阻的MOS管應(yīng)可防止此種失效的發(fā)生。還有由于保護電路吸收的瞬間能量有限,太大的瞬間信號和過高的靜電電壓將使保護電路失去作用。所以焊接時電烙鐵必須可靠接地,以防漏電擊穿器件輸入端,一般使用時,可斷電后利用電烙鐵的余熱進行焊接,并先焊其接地管腳。
六、柵極電壓失效
柵極的異常高壓來源主要有以下3種原因:
1、在生產(chǎn)、運輸、裝配過程中的靜電。
2、由器件及電路寄生參數(shù)在電源系統(tǒng)工作時產(chǎn)生的高壓諧振。
3、在高壓沖擊時,高電壓通過Ggd傳輸?shù)綎艠O(在雷擊測試時,這種原因?qū)е碌氖л^為常見)。
至于PCB污染等級、電氣間隙及其它高壓擊穿IC后進入柵極等現(xiàn)象就不做過多解釋。
柵極電壓失效的預(yù)防措施:
柵源間的過電壓保護,即如果柵源間的阻抗過高,則漏源間電壓的突變會通過極間電容耦合到柵極而產(chǎn)生相當(dāng)高的UGS電壓過沖,這一電壓會引起柵極氧化層永久性損壞, 如果是正方向的UGS瞬態(tài)電壓還會導(dǎo)致器件的誤導(dǎo)通。為此要適當(dāng)降低柵極驅(qū)動電路的阻抗,在柵源之間并接阻尼電阻或并接穩(wěn)壓值約20V的穩(wěn)壓管。特別要注意防止柵極開路工作。
其次是漏極間的過電壓防護。如果電路中有電感性負載,則當(dāng)器件關(guān)斷時,漏極電流的突變(di/dt)會產(chǎn)生比電源電壓高的多的漏極電壓過沖,導(dǎo)致器件損壞。應(yīng)采取穩(wěn)壓管箝位,RC箝位或RC抑制電路等保護措施。
以上是創(chuàng)芯檢測小編整理的MOSFET管失效相關(guān)內(nèi)容,希望對您有所幫助。創(chuàng)芯檢測是一家電子元器件專業(yè)檢測機構(gòu),目前主要提供電容、電阻、連接器、MCU、CPLD、FPGA、DSP等集成電路檢測服務(wù)。專精于電子元器件功能檢測、電子元器件來料外觀檢測、電子元器件解剖檢測、丙酮檢測、電子元器件X射線掃描檢測、ROHS成分分析檢測。歡迎致電,我們將竭誠為您服務(wù)!